Поиск узкого места предприятия на примере системы дистрибуции. Методика оценки производственных возможностей предприятия Выявление узких мест

Существует такая статистика: 20% кода выполняется 80% времени. Точность ее
вряд ли полностью соответствует реальному положению вещей, а вот общий смысл
довольно интересен: получается, что оптимизация всего приложения – занятие
неблагодарное и глупое, а реальные результаты может дать только оптимизация тех
20% приложения, которые выполняются дольше всего. Причем найти эти 20% не так уж
и сложно.

В этой статье мы будем говорить о профилировании . Если верить Википедии,
профилирование есть не что иное, как "сбор характеристик работы программы, таких
как время выполнения отдельных фрагментов, число верно предсказанных условных
переходов, число кэш-промахов и так далее". В переводе на русский язык это
означает "выявление узких мест программы" (или, как говорят англофилы,
"бутылочных горлышек"), а именно – всех тех участков кода, на которых программа
начинает "пробуксовывать", заставляя пользователя ждать.

Простейшее профилирование можно произвести голыми руками (и ниже я покажу,
как это сделать), однако лучше положиться на сообщество, представители которого
уже создали все необходимые инструменты. Первый и наиболее популярный инструмент
носит имя GNU Profiler (или gprof). Он испокон веков используется для
профилирования кода, генерируемого компилятором GCC. Второй - GNU Coverage
testing tool (gcov), утилита для более детального анализа производительности.
Третий - набор инструментов отладки и профилирования под общим именем Google
Performance Tools (сокращенно GPT). Ну а четвертый - это Valgrind, который хоть
и предназначен для поиска ошибок работы с памятью, но содержит в своем арсенале
ряд утилит для анализа производительности программ.

Начнем, как и полагается, с классики.

GNU Profiler

GNU Profiler (gprof) - один из старейших профайлеров, доступных для
операционных систем типа UNIX. Он входит в состав пакета gcc, и потому может
быть использован для профилирования программ, написанных на любом поддерживаемом
им языке (а это не только C/C++, но и Objective-C, Ada, Java).

Сам по себе gprof не является инструментом профилирования, а лишь позволяет
отобразить профильную статистику, которая накапливается приложением во время
работы (само собой разумеется, по умолчанию никакое приложение этого не делает,
но может начать, если собрать программу с аргументом "-pg").

Рассмотрим, как это работает в реальных условиях. Чтобы ощутить все
достоинства gprof, мы применим ее не к какому-нибудь абстрактному, искусственно
созданному приложению, а к самому настоящему повседневно используемому. Пусть
это будет gzip.

Получаем и распаковываем исходники архиватора:

$ wget www.gzip.org/gzip-1.3.3.tar.gz
$ tar -xzf gzip-1.3.3.tar.gz
$ cd gzip-1.3.3

Устанавливаем инструменты, необходимые для сборки (в Ubuntu это делается
через инсталляцию мета-пакета build-essential):

$ sudo apt-get install build-essential

Запускаем конфигуратор сборки, передав в переменной окружения CFLAGS аргумент
"-pg":

$ CFLAGS="-pg" ./configure

Компилируем программу:

Теперь у нас есть бинарник gzip, способный вести статистику своего
исполнения. Каждый его запуск будет сопровождаться генерацией файла gmon.out:


$ ls -l gmon.out
-rw-r--r-- 1 j1m j1m 24406 2010-11-19 14:47 gmon.out

Этот файл не предназначен для чтения человеком, но может быть использован для
создания подробного отчета об исполнении:

$ gprof ./gzip gmon.out > gzip-profile.txt

Наиболее важная часть полученного файла показана на скриншоте.

Каждая строка - это статистика исполнения одной функции, столбцы - различные
показатели. Нас интересуют первый, третий, четвертый и седьмой столбцы. Они
отображают информацию об общем количестве времени, затраченном на исполнение
функции (первый столбец - в процентах, третий - в секундах), количестве ее
вызовов и имени.

Попробуем проанализировать отчет. Первой в списке идет функция deflate,
которая была вызвана всего один раз, но "сожрала" 29% всего времени исполнения
программы. Это реализация алгоритма компрессии, и, если бы перед нами стояла
задача оптимизировать gzip, мы должны были бы начать именно с нее. 22% времени
ушло на исполнение функции longest_match, но, в отличие от deflate, она была
вызвана аж 450 613 081 раз, поэтому каждый отдельный вызов функции занимал
ничтожное количество времени. Это второй кандидат на оптимизацию. Функция
fill_window отняла 13% всего времени и была вызвана "всего" 22 180 раз.
Возможно, и в этом случае оптимизация могла бы дать результаты.

Промотав файл отчета до середины (кстати, сразу за таблицей идет подробная
справка обо всех ее столбцах, что очень удобно), мы доберемся до так называемого
"графа вызовов" (Call graph). Он представляет собой таблицу, разбитую на записи,
отделенные друг от друга пунктиром (повторяющимися знаками минуса). Каждая
запись состоит из нескольких строк, при этом вторая строка вопреки здравому
смыслу называется "первичной" и описывает функцию, которой посвящена запись.
Строкой выше располагается описание вызывающей ее функции, а ниже - вызываемых
ей.

Столбцы содержат следующую информацию (слева направо): индекс (index, он есть
только в первичной строке и, по сути, ничего не значит); процент времени,
который уходит на выполнение функции (% time); количество времени, затрачиваемое
на ее выполнение в секундах (self); количество времени, затрачиваемое на
выполнение функции и всех вызываемых ею функций (children); количество вызовов
функции (called) и ее имя (name).

Граф вызовов оказывается очень полезен, когда речь заходит об оптимизации
чужого кода. Становятся видны не только узкие места программы, но и вся логика
ее работы, которая может быть неочевидна при изучении исходников.

GNU Coverage testing tool

Кроме gprof, компилятор GCC имеет в своем составе еще один инструмент
профилирования, который позволяет получить более детальный отчет о выполнении
приложения. Утилита называется gcov и предназначена для генерации так
называемого аннотированного исходного кода, который напротив каждой строки
содержит количество ее исполнений. Это может понадобиться для более глубокого
изучения проблем приложения, когда функции, виновные в "тормозах", найдены, а
суть проблемы так и остается неясна (например, непонятно, какая строка в
многократно вложенном цикле внутри длиннющей функции несет ответственность за
аномальное падение производительности).

Gcov не может полагаться на статистику, генерируемую приложением при сборке с
флагом "-pg", и требует пересборки с флагами "-fprofile-arcs" и "-ftest-coverage":

$ CFLAGS="-fprofile-arcs -ftest-coverage"
./configure && make

$ ./gzip ~/ubuntu-10.10-desktop-i386.iso

Для каждого файла исходного кода будет сгенерирован граф вызовов, на основе
которого можно создать подготовленный для чтения человеком аннотированный
исходник:

$ gcov deflate.c
File "deflate.c"
Lines executed:76.98% of 139
deflate.c:creating "deflate.c.gcov"

Полученный в результате файл состоит из трех колонок: количество исполнений
строки, номер строки и сама строка. При этом для строк, не содержащих кода, в
первой колонке будет стоять знак минуса, а для строк, ни разу не выполненных -
последовательность шарпов: #####.

Google Performance Tools

Google Performance Tools (сокращенно GPT) - это разработка сотрудников Google,
предназначенная для поиска утечек памяти и узких мест приложений. Как и gprof,
GPT не является внешней по отношению к тестируемому приложению программой и
заставляет его самостоятельно вести статистику своего исполнения. Однако
используется для этого не внедренный на этапе сборки приложения код, а
библиотеки, которые могут быть прилинкованы к приложению во время сборки или
подключены при запуске.

Всего разработчикам доступно две подключаемых библиотеки: tcmalloc (которая,
по уверению авторов GPT, представляет собой самую быструю на свете реализацию
функции malloc, а также позволяет производить анализ того, как память
расходуется, выделяется и течет) и profiler, генерирующая отчет о выполнении
программы, наподобие gprof. Также в комплект входит утилита pprof,
предназначенная для анализа и визуализации накопленных данных.

Исходный код, а также rpm- и deb-пакеты всего этого набора доступны на
официальной страничке (code.google.com/p/google-perftools), однако я бы не
советовал заморачиваться с ручной установкой, так как набор доступен в
стандартных репозиториях Fedora и Ubuntu, и его можно установить одной простой
командой:

$ sudo apt-get install google-perftools \libgoogle-perftools0
libgoogle-perftools-dev

$ LD_PRELOAD=/usr/lib/libprofiler.so.0.0.0 \
CPUPROFILE=gzip-profile.log ./gzip \
/home/j1m/ubuntu-10.10-desktop-i386.iso

Однако сами гугловцы не советуют применять этот метод (очевидно из-за проблем
с программами, написанными на C++), рекомендуя линковать библиотеку во время
сборки. Что ж, не будем спорить.

Для экспериментов возьмем все тот же gzip и повторно пересоберем его,
слинковав бинарник с нужной библиотекой:

$ cd ~/gzip-1.3.3
$ make clean
$ ./configure
$ LDFLAGS="-lprofiler" ./configure && make

Теперь gzip вновь готов вести лог своего исполнения, но не будет делать этого
по умолчанию. Чтобы активировать профайлер, необходимо объявить переменную
окружения CPUPFOFILE и присвоить ей путь до файла профиля:

$ CPUPROFILE=gzip-cpu-profile.log ./gzip \
~/ubuntu-10.10-desktop-i386.iso
PROFILE: interrupts/evictions/bytes = 4696/946/91976

Как и в случае с gprof, получившийся отчет имеет бинарную форму и может быть
прочитан только с использованием специальной утилиты. В GPT ее роль выполняет
perl-скрипт pprof (в Ubuntu во избежание путаницы с другой одноименной утилитой
он переименован в google-pprof), который может генерировать не только таблицы и
аннотированные исходники на манер gcov, но и визуальные графы вызовов. Всего
существует 11 типов вывода этой утилиты, за каждым из которых закреплен
соответствующий аргумент командной строки:

  1. Текстовый (--text) - таблица, подобная выводу gprof;
  2. Callgrind (--callgrind) - вывод в формате, совместимом с утилитой kcachegrind (из пакета valgrind);
  3. Графический (--gv) - граф вызовов, немедленно отображаемый на экране;
  4. Листинг (--list=) - аннотированный листинг указанной функции;
  5. Дизассемблированный листинг (--disasm=) - аннотированный
    дизассемблированный листинг указанной функции;
  6. Символьный (--symbols) - листинг декодированных символьных имен;
  7. Графический файл (--dot, --ps, --pdf, --gif) - граф вызовов, сохраняемый
    в файл;
  8. Сырой (--raw) - подготовка бинарного файла профиля к передаче по сети
    (перекодируется с помощью печатаемых символов).

Наибольший интерес для нас представляют текстовый ("--text") и графический
("--gv") типы вызовов. Только они могут дать полную информацию о выполнении
приложения и всех его проблемных местах. Текстовый вывод генерируется следующим
образом:

$ google-pprof --text ./gzip gzip-cpu-profile.log

Как видно на скриншоте, вывод представляет собой таблицу с перечислением всех
функций и затрат на их исполнение. На первый взгляд она кажется очень похожей на
таблицу, генерируемую утилитой gprof, но это не так. Будучи всего лишь
библиотекой, GPT не может вести статистику исполнения программы так же детально
и точно, как это делает код, внедренный прямо в приложение. Поэтому вместо
записи всех фактов вызова и выхода из функций (поведение программы, собранной с
флагом "-pg"), GPT применяет метод, называемый сэмплированием. Сто раз в секунду
библиотека активирует специальную функцию, в задачи которой входит сбор данных о
том, в какой точке в текущий момент происходит выполнение программы, и запись
этих данных в буфер. По завершению работы программы из этих данных формируется и
записывается на диск профильный файл.

Именно поэтому в выводе pprof нет информации о том, сколько раз функция была
вызвана за время работы программы, или сколько процентов времени ушло на ее
исполнение. Вместо этого для каждой функции указывается количество проверок, во
время которых было выяснено, что в данный момент программа занималась
исполнением этой функции. Поэтому количество проверок, приведенное для каждой
функции, можно смело считать за общее время ее исполнения.

Во всем остальном таблица сильно напоминает вывод gprof: по функции на
строку, по показателю на столбец. Всего столбцов шесть:

  1. Количество проверок для данной функции;
  2. Процент проверок на все остальные функции программы;
  3. Количество проверок для данной функции и всех ее потомков;
  4. То же число в процентах от общего количества проверок;
  5. Имя функции.

Поначалу такой подход к измерению времени исполнения кажется слишком
неточным, но если сравнить таблицы, полученные с помощью gprof, с таблицами
pprof, становится ясно, что они показывают одинаковую картину. Более того, GPT
позволяет изменить количество проверок на секунду времени с помощью переменной
окружения CPUPROFILE_FREQUENCY, так что точность можно увеличить в десять, сто
или тысячу раз, если того требует ситуация (например, если необходимо
профилировать исполнение очень небольшой программы).

Несомненным достоинством GPT перед gprof является умение представлять
информацию в графическом виде. Для активации этой функции pprof следует
запускать с флагом "--gv" (кстати, для показа графа будет использована
одноименная утилита):

$ google-pprof --gv ./gzip gzip-cpu-profile.log

Генерируемый в результате выполнения этой функции граф вызовов функций очень
наглядный и гораздо более простой для восприятия и изучения, чем аналогичный
текстовый граф, генерируемый командой gprof. Имя и статистика исполнения каждой
функции размещены в прямоугольниках, размер которых прямо пропорционален
количеству времени, затраченному на исполнение функции. Внутри прямоугольника
размещены данные о том, сколько времени ушло на исполнение самой функции и ее
потомков (время измеряется в проверках). Связи между прямоугольниками указывают
на очередность вызова функций, а числовые значения, указанные рядом со связями -
на время исполнения вызываемой функции и всех ее потомков.

Еще одно достоинство GPT заключается в способности использовать разные уровни
детализации для вывода данных, позволяя пользователю самому выбирать единицы
дробления. По умолчанию в качестве такой единицы используется функция, поэтому
любой вывод pprof логически разделен на функции. Однако при желании в качестве
единицы дробления можно использовать строки исходного кода (аргумент "--lines"),
файлы ("--files") или даже физические адреса памяти ("--addresses"). Благодаря
такой функциональности GPT очень удобно использовать для поиска узких мест в
больших приложениях, когда сначала ты анализируешь производительность на уровне
отдельных файлов, затем переходишь к функциям и, наконец, находишь проблемное
место на уровне исходного кода или адресов памяти.

И последнее. Как я уже говорил выше, GPT - это не только хороший профайлер,
но и инструмент для поиска утечек памяти, поэтому у него есть один очень
приятный побочный эффект в виде способности к анализу потребления памяти
приложением. Для этого приложение должно быть собрано или запущено с поддержкой
библиотеки tcmalloc, а в переменную HEAPPROFILE записан адрес для размещения
профильного файла. Например:

$ LD_PRELOAD=/usr/lib/libtcmalloc.so.0.0.0 \
HEAPPROFILE=gzip-heap-profile.log \
./gzip ~/ubuntu-10.10-desktop-i386.iso
Starting tracking the heap
Dumping heap profile to gzip-heap-profile.log.0001.heap (Exiting)

К полученному файлу будет добавлено окончание 0000.heap. Если натравить на
этот файл утилиту pprof и указать флаг "--text", она выведет на экран таблицу
функций и уровень потребления памяти каждой из них. Столбцы значат все то же
самое, что и в случае обычного профилирования, с тем исключением, что вместо
количества проверок и их процентных отношений таблица теперь содержит количество
потребляемой памяти и процент от общего потребления памяти.

При необходимости эту информацию можно получить в графическом виде, а также
изменить единицы дробления. Библиотека может быть настроена с помощью различных
переменных окружения, наиболее полезная из которых носит имя HEAP_PROFILE_MMAP.
Она включает профилирование для системного вызова mmap (по умолчанию GPT
собирает статистику только для вызовов malloc, calloc, realloc и new).

Пара слов о Valgrind

В последней части статьи мы кратко рассмотрим способы использования
инструмента Valgrind для профилирования приложений. Valgrind - это очень мощный
отладчик памяти, который способен найти такие ошибки работы с памятью, о которых
другие утилиты даже не подозревают. Он имеет модульную архитектуру, которая с
течением времени позволила ему обрасти несколькими плагинами, не относящимися
напрямую к отладке. Всего таких плагина три:

  1. Cachegrind - позволяет собирать статистику по попаданию данных и
    инструкций программы в кэш первого и второго уровней процессора (мощный и
    сложный инструмент, который полезен при выполнении профилирования
    низкоуровневого кода).
  2. Massif - профайлер кучи, схожий по функциональности с аналогом из пакета GPT.
  3. Callgrind - профайлер, во многом похожий на таковой в gprof и GPT.

По умолчанию в качестве основного плагина Valgrind использует memcheck
(отладчик памяти), поэтому для его запуска в режиме профилирования необходимо
указать нужный плагин вручную. Например:

$ valgrind --tool=callgrind ./program

После этого в текущем каталоге будет создан файл с именем
callgrind.out.PID-программы, который можно проанализировать с помощью утилиты
callgrind_annotate или графической программы kcachegrind (устанавливается
отдельно). Я не буду расписывать формат генерируемых этими программами данных
(он хорошо представлен в одноименных man-страницах), скажу лишь, что
callgrind_annotate лучше запускать с флагом "--auto", чтобы он смог
самостоятельно найти файлы исходных текстов программы.

Для анализа расхода памяти Valgrind следует запускать с аргументом "--tool=massif".
После чего в текущем каталоге появится файл massif.out.PID-программы, который
может быть проанализирован с помощью утилиты ms_print. В отличие от pprof, она
умеет выводить данные не только в виде стандартной таблицы, но и генерировать
красивые ascii-art графики.

Выводы

Такие инструменты, как gprof, gcov и GPT, позволяют провести анализ работы
приложения и выявить все его узкие места вплоть до отдельной процессорной
инструкции, а подключив к процессу профилирования еще и Valgrind, можно добиться
удивительных результатов.

INFO

По умолчанию gprof не выводит профильной информации для функций
библиотеки libc, но ситуацию можно исправить, установив пакет libc6-prof и
собрав тестируемое с библиотекой libc_p: "export LD_FLAGS="-lc_p"".

Активировать профайлер GPT можно не только с помощью переменной окружения
CPUPROFILE, но и обрамив тестируемый участок кода функциями ProfilerStart()
и ProfilerStop(), которые объявлены в google/profiler.h.

WARNING

Из-за требований к безопасности GPT не сработает в отношении приложений с
установленным битом SUID.

  • 17. Анализ возникающих на предприятии узких мест.
  • 18. Методы расчета инвестиций.
  • 19.Расчет производственного результата на краткосрочный период.
  • 21. Комиссионное вознаграждение торговых представителей на базе сумм покрытия.
  • 22.Кружки качества.
  • 23. Анализ скидок.
  • 24. Анализ областей сбыта.
  • 25. Функционально-стоимостной анализ.
  • 26. Xyz-анализ.
  • 27. Собственное производство - поставки со стороны.
  • 28. Кривая опыта.
  • 29. Анализ конкуренции.
  • 30. Логистика.
  • 31. Портфельный анализ.
  • 33. Кривая жизненного цикла продукта.
  • 34. Анализ сильных и слабых сторон предприятия.
  • 36. Разработка сценариев.
  • 37. Последовательность этапов проектирования процесса контроллинга в организации.
  • 38. Организационная и эксплуатационная фазы проектирования процесса контроллинга.
  • 40. Социально-психологические факторы сопротивления новой концепции управления на предприятии: групповое сопротивление.
  • 41. Задачи контроллера на предприятии.
  • 42. Требования к профессиональным и личностным свойствам контроллеров.
  • 43. Примеры основных функциональных ролей контроллера.
  • 46. Основные виды организации контроллинга.
  • 47. Варианты позиционирования службы контроллинга.
  • 48. Предпосылки организации службы контроллинга на предприятии.
  • 49. Централизованный и децентрализованный контроллинг.
  • 50. Роль и задачи главного контроллера на предприятии.
  • 51. Концепции контроллинга в отношении задач учета.
  • 52. Место (роль и задачи) децентрализованных контроллеров в структуре предприятия.
  • 53. Преимущества и недостатки создания самостоятельной службы контроллинга в организации.
  • 54. Конфликт контроллера и руководителя: сущность и виды конфликта.
  • 55. Функциональный подход к сбору информации для принятия управленческих решений: недостатки и достоинства.
  • 56. Автоматизация обработки информации при внедрении концепции контроллинга.
  • Автоматизация.
  • 58. Единое информационное пространство: сущность, необходимость создания (условия), возможности.
  • 59. Интегрированная управленческо-информационная система как инструмент управления на базе эвм. Основные блоки уис и их функции.
  • 61. Eis: назначение, основные характеристики.
  • 62. Ошибочные предпосылки при проектировании уис.
  • 63. Информационный реинжиниринг: сущность, основные этапы.
  • 65. Общеэкономический и конкретно-управленческий смысл планирования деятельности фирмы.
  • 17. Анализ возникающих на предприятии узких мест.

    Задача оперативного планирования производственной программы заключается в определении номенклатуры и объемов продукции. Для этого должны быть известны следующие данные:

    1) цены на продукцию;

    2) затраты на производство продукции;

    4) располагаемые производственные мощности.

    Проблематика планирования производственной программы

    определяется прежде всего видом и количеством узких мест в производстве. Кроме того, значение имеют возможные альтернативные технологические процессы. Речь идет об устанавливаемом оборудовании и об интенсивности его использования в производственном процессе.

    Возможны различные подходы к планированию производственной программы.

    На предприятии существуют три принципиальных подхода:

    а) Отсутствие узких мест.

    Поскольку нет узких мест, то производиться может вся продукция.

    б) Наличие одного узкого места.

    Предположим, установлено, что на предприятии есть одно узкое место. Необходимо различать случаи единственного и возможного альтернативного технологического процесса.

    Если переменные затраты в единицу времени одинаковы для всех продуктов, то нужно проверить, для всех ли продуктов и процессов суммы покрытия положительны или для отдельных комбинаций продуктов и процессов они отрицательны

    Если известны выручка от продажи и переменные затраты на единицу продукции, а значит, и сумма покрытия, то оптимальную производственную программу можно сформировать поэтапно Ориентация на величину суммы покрытия позволяет последовательно составлять программу, если есть только одно узкое место.

    в) Наличие нескольких узких мест.

    Если при проверке программ сбыта и производства оказывается, что в производстве есть сразу несколько узких мест, то принять решение сложнее. В этом случае следует применять методы линейного программирования.

    Планирование оптимальной производственной программы не должно осуществляться исключительно с затратной точки зрения, необходимо учитывать ориентированные на прибыль критерии. Данные расчетов по полным затратам недостаточны для планирования оптимальной производственной программы, поскольку при таких расчетах затраты не разделяются на переменные и постоянные. Наряду с затратами необходимо учитывать влияние управленческих решений на выручку от продажи и суммы покрытия. В связи с этим требуется использовать данные расчетов сумм покрытия.

    Наличие одного узкого места может объясняться двумя причинами:

    а) если производственный процесс одноступенчатый, то существующих мощностей оказывается недостаточно для производства максимально возможного количества всех продуктов с положительными суммами покрытия;

    б) если производственный процесс многоступенчатый, то узкое место возникает только на одном участке, мощности которого не хватает для производства всех продуктов.

    Если на предприятии есть узкое место, необходимо рассчитать относительные величины сумм покрытия в единицу времени загрузки узкого места по отдельным группам продуктов. С учетом этого следует изменить ранжированную последовательность производства продуктов с целью достижения оптимального значения производственного результата. Определение программы продаж и производства без учета располагаемых мощностей в узком месте приводит к снижению общей суммы покрытия. Это неверное решение, поскольку в таком случае предприятие теряет свои суммы покрытия

    Предыстория
    В октябре 2010г., в рамках организации проектов по повышению эффективности
    авиазавода на 2011г., компания «Райтстеп» выполнила диагностику основного
    производства завода. Основной целью обследования являлось определение «узких мест», т.е. тех объектов, процедур управления и подразделений, которые ограничивали весь выпуск завода.
    По результатам анализа, основными «узкими местами» завода были определены (потенциальным «узким местом» также являлись процедуры (вернее, их отсутствие) ведения электронного состава изделия):
    1) агрегатно-сборочный цех АСЦ1;
    2) методы планирования и управления производством;
    3) цех ШЦ (штамповочный), цех МЦ (механический)
    В настоящей статье описывается «расшивка» «узкого места» в цехе АСЦ1.

    Цех АСЦ1 - первый в последовательной цепочке сборки машин (там из агрегатов начинает собираться изделие, далее - передается в остальные сборочные цеха, АСЦ2 и ЦОС), являющейся «вершиной треугольника» внутризаводской цепочки поставки и являющийся потребителем остальных «детале-делательных» цехов (ДДЦ). Или - началом «трубопровода» перемещения изделия по цепочке сборки.

    Следовательно, любая проблема, возникающая в цехе АСЦ1 и ограничивающая начало сборки изделий автоматически приводила к ограничению выпуска машин всем заводом.
    И на осень 2010 года цех АСЦ1 являлся таким узким местом, со средним выпуском в 6 изделий в месяц, при заводском плане в 7-8. Основными проблемами АСЦ1 являлись:
    1) несинхронность поставок деталей и сборочных единиц от других цехов в адрес цеха АСЦ (читай - постоянные «неожиданные» дефициты на сборке)
    обусловленная фактическим отсутствием расчетного позаказного (помашинного) плана поставок;
    2) крайне неэффективная внутренняя организация работы в цехе, с основным симптомами (не причинами!): «нет людей», «бракованные детали», «нет места, некуда ставить изделия».

    Фактически, проблемы АСЦ1 являлись отражением проблем в управлении и организации производства всего завода. И, прежде всего:
    1) фактическим отсутствием синхронизированного между «деталеделательными» и «агрегатносборочными» (ДДЦ и АСЦ) цехами помашинного номенклатурного плана, что приводило к выпуску не того, что надо и не в том количестве, как следствие - к работе «по дефицитам» и, в конечном итоге, к срыву графика сборки;
    2) сдельной оплате труда, позволяющей и вынуждающей цеха гнаться, прежде всего за «валовкой», даже - в цехах-«узких местах», при этом - не всегда с учетом дефицитов.

    Выбор концепции

    По результатам анализа данных и обсуждения возможных путей «расшивки» узкого места» были определены следующие направления преобразований.

    Первое: изменение системы управления производством так, чтобы она заставляла выпускать только того, что нужно при сравнительно невысоких затратах. Для этого было необходимо:
    1) организовать систему вытягивающего позаказного номенклатурного цехового планирования, систему мониторинга поставок и «закрытия» машин;
    2) через изменение системы мотивации (модификации «сделки») мотивировать цеха на выполнение прежде всего указанного плана;
    3) обеспечить возможность управления процессом производства и поставок через визуализацию и мониторинг происходящего.

    Второе: изменение системы организации производства цеха через:
    1) оптимизацию внутрицеховых потоков движения деталей и агрегатов,
    2) устранение всех лишних как производственных так и не производственных операций на пути создания машины,
    3) обеспечение визуализации происходящего, статуса настоящей ситуации, будущих и настоящих проблем,
    4) сокращение партий запуска и перемещений по всей цепочке производства.

    Для реализации указанных преобразований были выбраны инструменты SCM («управление производственными цепочками»), Lean («бережливое производство») и ТОС («Теория Ограничений») методов управления производством.

    Работы по первому направлению, постановка «Система Планирования и Мониторинга завода» начали реализовываться через внедрение для всего завода новых процессов (процедур) синхронизованного (под график сборки и отгрузки машин) планирования и управления производством, плюс, внедрение поддерживающей их Lean IT Системы Планирования и Мониторинга производства SCMo.

    Работы по второму направлению были приняты к реализации с использованием более традиционных но, «подогнанных» к применению на заводе инструментов Lean и TOC.

    Преобразования. Новая организация внутри цеха АСЦ1

    Проект преобразований в АСЦ1 был начат в январе 2011 года, но затем, в связи сопределенными изменениями в цехе, остановлен.

    Представляемые ниже результаты проекта были достигнуты всего за несколько месяцев, в т.ч. благодаря решительной и принципиальной позиции руководства цеха. И, забегая вперед, отметим, что основная цель проекта - увеличена пропускная способность цеха с 6 до 8 машин в месяц, при:
    неувеличении операционных затрат (ФОТ, численность рабочих и пр.) и запасов деталей и НзП - была достигнута.

    Оптимизация участка внестапельной сборки изделий

    Физическое расположение изделий. Работа с нехваткой места

    По результатам анализа было определено, что одним из «узких мест» АСЦ1 являлась физическая организация участка внестапельной сборки. Участок был загроможден старой оснасткой/антресолями, ненужными шаблонами, деталями и прочей ерундой, которая фактически не использовалась при производстве машин существующих модификаций.

    силу этого, на участке внестапельной сборки удавалось разместить максимум 3-4 одновременно собираемых машин. Причем, в крайне стесненных и неоптимальных условиях.



    Этого было бы достаточно при идеальной организации работ по сборке и при идеальном соблюдении графика поставок деталей из других цехов. Но, «в реальном мире», при возникновении проблем с каким либо изделием, он тормозил сборку, в т.ч. стапельную всех остальных машин. И, бригады сборщиков, просто не имели физической возможности переходить на другую машину.
    В результате было принято решение о сносе ненужного оборудования, расчистки места, и организации на участке двух «линий» сборки машин. В ходе проведения данных работы были использованы методы эргономичной организации рабочего пространства по 5С. См. схему и фото.



    Как результат, на участке внестапельной сборки теперь можно поместить 6 машин, включая сдаточные, и это - при несравненно лучшей и более удобной организации рабочих мест.

    Перенос операций с окончательной сборки изделия на другие участки.

    По результатам анализа участка внестапельной сборки, являвшегося «узким место» цеха, были выявлены многочисленные «лишние» операции, т.е. операции, которые более эффективно могли быть выполнены на других участках и менее квалифицированным персоналом. Некоторые примеры - см. фото.

    После проведения тщательного анализа и обсуждений с технологами цеха, данные операции были перенесены на другие, менее загруженные участки, освободив время сборщиков от «непрофильных» операций.

    Изменение системы начисления заработной платы рабочих

    В рамках преобразований была изменена система начисления заработной платы рабочим.
    Фонд заработной платы явным образом рассчитывался исходя из план выпуска, факт зависел от количества сделанных и переданных в следующий по цепочке цех машин.
    Далее, эта сумма распределялась по членам сборочных бригад (бригадирами), в зависимости о квалификации работников и коэффициента трудового участия.

    Система сигнализации

    Дополнительно было принято решение построить гибкую структуру рабочего процесса в цехе, ориентированную на создание максимальных условий для
    производственного рабочего и сигнализации/решение всех его потребностей/проблем в оперативном режиме, как показано ниже:

    Для быстрого реагирования вышеуказанной цепочки на возникшие потребности исполнителей решили использовать средства визуализации, такие как сигнальные лампочки. Каждый сектор участка планируется, оснастить двумя типами лампочек зеленого и красного цвета и кнопками их включения.

    Зеленая лампа сигнализирует о том, что сектор полностью обеспечен деталями, имеется оснастка для изготовления и полностью ясны текущие потребности в сборках (т.е. ситуация нормальная).

    Красная лампочка - это сигнал к тому, что сектор нуждается в решении проблем одного из трех направлений, и мастер участка должен максимально быстро среагировать на этот запрос и принять меры к быстрейшему решению, или поставить в известность других исполнителей, если вопрос затрагивает их компетенции.

    Желтая - проблема существует, но в процессе решения.

    Оптимизация участка детальной сборки цеха

    Система обеспечения поставок от участка детальной сборки цеха

    После проведения указанных выше преобразований, пропускную способность участка внестапельной сборки удалось увеличить до 8 машин в месяц. Но, практически сразу «узкое место» цеха АСЦ1 переместилось на участки детальной сборки цеха.

    В связи с этим, новая организация была внедрена на участке детальной сборки цеха, участке, изготовляющего и напрямую поставляющего сборки на внестапельную сборку. Работы были выполнены примерно за месяц, по предложенной «Райтстеп» методологии:
    1) оптимизация организации рабочих мест участка по принципам «5С»;
    2) установка системы визуализации;
    3) организация системы вытягивающего планирования и поставок деталей на сборку, методами «супермаркет» и «канбан».



    Внедренная новая организация производства настолько понравилась мастерам и рабочим других участков цеха, что участки, в буквальном смысле слова «выстроились» в очередь на внедрение.

    Преобразования. Обеспечение своевременности поставок в АСЦ1


    Система Планирования и Мониторинга SCMo

    С точки зрения «внешних» условий, огромной проблемой цеха являлась неритмичная (несинхронная с ритмом сборки конкретных машин) поставка деталей из ДДЦ цехов завода.
    Решение данной проблемы осуществлялось в рамках общезаводского проекта постановки системы синхронного позаказного номенклатурного межцехового планирования. В качестве методологии была взята методология «вытягивающего» (точно вовремя и точно в количестве под заказ) планирования и методология работы с «буферами» и «приоритетами» «узких мест» Теории Ограничений.

    В качестве инструмента реализации использовалась Lean ERP система SCMo, обеспечивающая on-line планирование, управление и мониторинг процессов производства и поставок.
    Настроенный для завода алгоритм планирования позволял формировать позаказные (под каждую машину или «россыпной» заказ) номенклатурный план
    производства и поставок для каждого цеха, охваченного системой. С постоянно обновляемой по факту производства цветовой сигнализацией/подсветкой каждой из партий поставляемых цехом-поставщиком деталей. См. схему ниже.

    В рамках проекта преобразований в цехе АСЦ1, с использованием SCMo удалось «правильно» поставить следующие процессы:
    1) формирование последовательности сборки машин по цехам АСЦ1 - АСЦ2 - ЦОС, и, для АСЦ1 - формирование графика сдачи, по конкретным машинам и на конкретные числа месяца (см. экранную форму ниже):

    2) на основании графика сдачи машин цехом АСЦ1 - формировать план поставок деталей и агрегатов от цехов - поставщиков. Полностью автоматизировать данный момент в настоящий момент не удалось из-за неточностей в электронном составе изделия (машина). В силу этого, было принято решение по частичному ведению в SCMo электронных дефицитов в адрес цехов поставщиков, с обязательной установкой поставщиками «обещанной даты». Фактически это - публикуемые on-line и доступные для всех «журналы дефицитов», которые ранее вели диспетчера ПДБ цеха, и информация из которых становилась доступна цехам поставщикам часто в искаженном виде, и только на планерках.

    Сделано это было в рамках новой методологии управления, переложенный на ИТ систему, а именно - обеспечение максимальной визуализации происходящего для всех участников производственной цепочки (см. ниже):

    Побочный положительный эффект - ведение «электронных дефицитов» в SCMo - возможность перехода на «электронные» планерки, эффективность которых гораздо выше традиционных, а затрачиваемое на них время - меньше.

    Система мониторинга происходящего (система видеонаблюдения)

    В рамках данного направления, для обеспечения максимальной визуализации происходящего в производстве, в цехе также была внедрена система визуализации (видеонаблюдения), работающая в on-line режиме и позволяющая при необходимости увидеть, что реально происходит на участках цеха в данный момент времени.


    Результаты проекта

    1. Увеличена пропускная способность цеха с 6 до 8 машин в месяц.

    При: неувеличении операционных затрат (ФОТ, численность рабочих и пр.) и запасов деталей и НзП.
    2. Введена в работу Система Планирования и Мониторинга поставок, синхронизирующая не только выпуск, но и запуск всех цехов завода с графиком
    агрегатной и окончательной сборки машин.
    3. Обеспечена полная прозрачность происходящего в производстве.
    4. Обеспечен базис для выхода в 2012 г. на ритм производства в 9 машин в месяц.
    5. Запущен «маховик» преобразований, в т.ч. и на остальных участках цеха.

    Райтстеп, Iris Partenaires

    Узкие места

    Узкие места - это недостаток производственных мощностей в цепи технологического процесса, определяемый каким-либо компонентом: оборудованием, персоналом, материалами или транспортировкой; ликвидируется в ходе организационно-технических мероприятий - «расшивка» узких мест.

    Узкие места могут возникать на предприятиях по различным причинам. В условиях сложной кооперации разнообразных машин, работающих на современных предприятиях, характер внутрипроизводственных связей, пропорциональность отдельных цехов и участков производства не могут быть раз навсегда данными и неизменными. Усовершенствование техники и технологии производства, улучшение организации труда, изменение характера производства на одном участке неизбежно вызывают необходимость соответствующих изменений на других участках, которые с ним связаны.

    Таблица 46. Узкие места

    Узкое место

    Описание проблемы

    Мероприятия и ожидаемый результат

    Планировка цеха

    В планировке цеха станки расположены перпендикулярно поточной линии - это не обеспечивает безопасности работников, стоящих за станками.

    Более оптимальным было бы расставить станки так называемой «елочкой» - под углом к линии. Это обеспечит безопасность работников и более эффективное использование площади цеха.

    Работа транспорта

    Транспорт в цехе работает следующим образом: в начале дня автокары приезжают в цех, забирают со склада заготовки и развозят их по поточным линиям, затем уезжают. В конце дня автокары вновь начинают свою работу: забирают из контейнеров готовую продукцию и отвозят ее на соответствующий склад. Все остальное время автокары простаивают.

    Можно организовать развоз заготовок и доставку готовой продукции не в конце и начале рабочего дня, а в течении всего рабочего времени.

    Работа транспортировщиков и грузчиков

    Заработная плата транспортировщику и грузчику выплачивается по полной ставке, но заняты они не весь рабочий день.

    Можно выплачивать грузчикам и транспортировщикам половину ставки, т.к. их занятость в цехе очень маленькая.

    Создать совмещение профессий-транспортировщик может работать и грузчиком.

    Заключение

    В курсовой работе проведены мероприятия по организации производственной деятельности механосборочного цеха. В процессе разработки был рассчитан объем продукции, определено необходимое количество оборудования, численность персонала, площадь цеха, фонд заработной платы основных рабочих, вспомогательных, руководителей, служащих, специалистов. Решение вопросов организации производства и управления им в цехе базировалось на изучении конструкций изделий, технологических процессов их изготовления, организации труда работников предприятия.

    Выполним расчет плановой загрузки оборудования и определим "узкие места". Построим календарный план производства и проанализируем производственную программу на предмет ее выполняемости.

    Определение узких мест производственной программы. Расчет и баланс загрузки оборудования при планировании производства.

    Любой начальник производства регулярно задается вопросом «Сможет ли он сделать все запланированные заказы в срок . Достаточно ли для этого производственных мощностей предприятия? Насколько напряженной предполагается работа в этом плановом периоде?»

    В данном ролике будут продемонстрированы модули системы TCS , позволяющие, во-первых, рассчитать и проанализировать объёмные показатели загрузки оборудования в интересующий временной период, а во-вторых, визуализировать календарный план производства в виде диаграммы Ганта с одновременным отображением загрузки интересующего оборудования.

    Итак, в качестве исходных данных в системе TCS уже созданы производственные заказы на готовые изделия - монтажные шкафы в различной комплектации и количестве, и заказ на изготовление унифицированных комплектующих собственного производства для поддержания норматива складского запаса.

    У каждого из этих заказов определена ориентировочная дата выпуска. Для заказов товарной продукции это обычно условия договора, для внутреннего заказа это приблизительно середина месяца. Напомним, что на складе у нас есть определенный запас унифицированных комплектующих (резерв), из которого и будут комплектоваться заказы первой половины месяца. А изготовленные к середине месяца позиции внутреннего заказа пойдут на восстановление складского резерва и комплектование остальных заказов периода.

    Следующим шагом выполним расчёт дат запуска для товарных позиций и их составляющих, а также комплектующих, изготавливаемых отдельным заказом для склада унифицированных деталей. Выделим все производственные спецификации планового периода и запустим макрос "Расчёт дат запуска/выпуска ".

    В результате, для всех изготавливаемых деталей и сборочных единиц мы получаем ориентировочные даты начала и окончания производства, рассчитанные исходя из заданных сроков и применяемых технологических процессов.

    Сделаем эти производственные спецификации рабочими , и получим на соответствующей закладке номенклатурный план производства . В нём перечислены позиции с количеством, которое необходимо изготовить, и сроки.

    Итак, самая ранняя дата запуска партии – 18 февраля, самая поздняя дата выпуска – 23 марта 2010 года.

    На закладке "Техпроцесс " представлена более детальная информация, а именно план по операциям. Т.е. список всех работ, которые необходимо выполнить для изготовления всех запланированных позиций. Для каждой работы рассчитана трудоемкость её выполнения, а также в соответствии с технологическим процессом отображено оборудование, цех, участок, профессия и разряд.

    Также, в системе TCS ведется информация о станочном парке предприятия, т.е. реальном количестве каждой модели оборудования и их наличие в подразделениях. Например, у нас на первом участке седьмого цеха расположены пресс Amada и пресс FINN-POWER, на втором участке оборудование для сварки, на третьем столы для сборки и контроля.

    Для оценки выполнимости данного плана используем модуль "" системы TCS . Установим даты начала и конца периода, в который предполагается выполнять запланированные работы, а именно 18 февраля и 23 марта 2010 года. Выполним расчёт.

    В результате расчёта показывается список всех моделей оборудования, задействованных для выполнения работ. Указывается, в какие группы оно входит и где расположено. Для каждой модели считается фонд рабочего времени в часах на заданный период. При расчёте учитывается количество этого оборудования в подразделении и график его плановых ремонтов и обслуживания. Также, рассчитывается, сколько часов суммарно данное оборудование будет занято выполнением запланированных операций. В последней колонке отображается плановая загрузка.

    На практике, в зависимости от величины предприятия и его структуры данный список может быть очень большим (много цехов, участков, моделей). Реально работать с таким объемом информации может быть затруднительно. Поэтому для удобства можно воспользоваться различными настройками.

    Например, показать загрузку только по одному интересующему нас подразделению. Выберем первый участок двенадцатого цеха или второй участок седьмого цеха. Можно показать загрузку только интересующей нас Группы оборудования , например, Контрольной . Оборудование этой группы присутствует в разных подразделениях предприятия.

    Чтобы быстро выявить потенциальные узкие места нашего производственного плана достаточно ввести пороговое значение загрузки . Введем 70%, считая, что оборудование, загрузка которого в плановом периоде превышает 70-80%, составляет так называемую группу риска. Скроем строки с меньшей загрузкой. В нашем примере только гидравлический координатно-револьверный пресс FINN-POWER загрузится более чем на 70%, т.е. для плана на март, он является тем самым узким местом.

    Случайный выход из строя данного оборудования может привести к срывам исполнения если не всего плана, то многих заказов планового периода. Что обычно приводит не только к финансовым штрафным санкциям, но и к потерям не финансового характера. Например, это негативное событие может повлиять и на деловую репутацию предприятия.

    Изучим, на какое оборудование также следует обратить особое внимание. Вводим пороговое значение 50% и просто раскрасим такие строки в выбранный цвет. К FINN-POWER добавился листогибочный пресс Amada , его расчётная загрузка составляет 57%. Все остальные цеха и оборудование в них загружены не так сильно и, скорее всего, не потребуют к себе повышенного внимания плановика.

    Таким образом, используя модуль "", можно сделать следующие выводы:

    Осуществим или не осуществим, принципиально, наш план. Критерием этой оценки будет превышение 100% загрузки по какой-либо модели. Если где-то загрузка более 100%, то не помогут никакие современные методы оптимизации производственного расписания. В этом случае надо увеличивать фонд работы оборудования, т.е. либо увеличивать временной период, либо нанимать дополнительный персонал, который будет трудиться во вторую смену, либо запускать рядом второй экземпляр оборудования.
    План нашего примера не имеет ни одной позиции, у которой значение загрузки превышало бы 100%. Значит, по крайней мере, теоретически, заданный объём работ возможно выполнить в установленные сроки на имеющемся оборудовании. Осуществим или не осуществим план в реалиях нашего производства. Данная оценка также позволяет сделать вывод о выполнимости представленного плана, но не теоретически, как первая, а ближе к жизни и индивидуальным особенностям каждого производства. Например, очевидно, что загрузка оборудования в 99%, позволит выполнить план, только при условиях работы без сбоев, задержек и простоев, когда все системы продублированы и на предприятии работают роботы. В реальности же сбои и задержки регулярно случаются по разным причинам. То материал во время не привезли, то станок не наладили, то рабочий заболел, то авария в электросети и т.д. и т.п. Поэтому на каждом предприятии, даже для разных цехов и участков этого предприятия или разного вида работ этот критерий имеет различное значение. Например, для одного участка критической считается загрузка в 80%, а для другого – 60%.
    Т.е. для каждого типа работ или участка можно выполнить сравнение с соответствующим индивидуальным пороговым значением, которое опытным плановикам обычно известно из практики. Соответствует ли структура существующего на предприятии станочного парка производственной программе. Такой вывод будет особенно полезен для предприятий, имеющих стабильную производственную программу, т.е. производственный план которых можно построить заранее, и он не подвержен сильным изменениям из месяца в месяц.
    В нашем примере большинство моделей оборудования не загружено и на 40%, в то время как загрузка пресса FINN-POWER достигает критического значения. Если бы подобное положение дел имело место в серийном производстве, то для увеличения объема производства, нам следовало бы купить в первую очередь именно заготовительное оборудование.



    
    Top