Твёрдый сплав вк8. Указать химический состав и применение ВК8, Т15К6. Титаново-вольфрамовая группа сплавов

Как увеличить скорость обработки стали резанием? Над решением этого вопроса инженеры и профессора всего мира трудились и продолжают трудиться со времен совершения промышленной революции. Высокие показатели твердости, теплостойкости, износостойкости - вот неполный перечень задач, стоящих перед учеными. Так, в Германии середины 30х годов активно проводились исследования по поиску материала, отвечающего всем вышеперечисленным требованиям. Тогда и появился первый аналог твердого сплава ВК8. Образцы данного материала по скорости резания превзошли все типы сталей, существующих на тот момент. Что послужило причиной такого успеха? Каков химический состав? Как, в конце концов, выглядит расшифровка ВК8? Обо всем этом по порядку.

Химический состав и способ получения

Согласно ГОСТ 3882-74 твердый сплав ВК8 представляет собой смесь зерен карбида вольфрама и кобальта, выступающего в качестве связующего звена. Кобальт (ГОСТ 123-2008) - металл, по виду схожий с железом, но обладает более темным оттенком. Основное назначение его в ВК8 - это придание тягучести и прочности сплаву. Карбид вольфрама (ГОСТ 28377-89)- соединение углерода с тугоплавким металлом вольфрамом . Твердость - свыше 80 единиц по Роквеллу.

ВК8 является продуктом порошковой металлургии, т. к. вышеперечисленные свойства составных элементов не позволяют проводить механическую обработку ковкой. Получение мелкой фракции карбида и кобальта осуществляется способом восстановления из оксидов и включает следующие операции:

  • Дробление шихты структурных составляющих.
  • Просеивание через сито с размером ячейки 1-2 мкм.
  • Смешивание фракций в пропорции, согласно требуемому химическому составу твердого сплава ВК8.
  • Предварительное придание формы прессованием с использованием органического клея.
  • Обработка давлением свыше 30 МПа и температурой 1400 ºС.

Вследствие этих процессов расплавившийся кобальт смачивает, а при последующей кристаллизации скрепляет кристаллы карбида. Как результат, образуется прочное и износостойкое соединение.

Физические свойства

ВК8 в отличие от быстрорежущих сталей обладает большей твердостью, которая соответствует 87,5 единиц HRC. Как пример, сталь Р12 имеет всего 60-70 HRC.

Теплостойкость сплава, т. е. температура, при которой материал будет работать, не теряя жесткости, составляет 800-1000 ºС. Благодаря этому и высокому значению теплопроводности (50,2 ВТ/ м С) резец ВК8 может работать со скоростью резания до 200 м/мин, в зависимости от типа обрабатываемого материала. Тогда как в этих же условиях сталь Р12 позволяет достичь значения только в 50 м/мин.

Предел прочности 1660 Н/мм2, плотность 14,5 г/см3, ударная вязкость 35 кДж/м2 - данные механические свойства дают возможность использовать сплав в условиях динамических и вибрационных нагрузок.

Физические свойства определяются не только его химическим составом, но и размером зерна карбида вольфрама. Чем больше зерно, тем выше показания прочности и ниже значение износостойкости. И наоборот, если сплав имеет мелкозернистую структуру.

Расшифровка стали ВК8

Обозначение исходит из наличия в составе карбидной фазы и связки в виде кобальта. В целом, оно схоже с шифровкой легированных сталей. Буква «В» означает вольфрам, «К» - кобальт. Цифра в конце определяет процентное соотношение последнего элемента. Итак, ВК8 состоит на 92% из карбоната вольфрама и 8% кобальта.

Для обозначения зернистости в конце могут ставить букву «М», что значит мелкозернистый, или «В» - крупнозернистый. Отсутствие буквы говорит о наличии среднего по размеру зерна в составе.

Область применения ВК8

ВК8 получил широкое распространение в разных видах производства, начиная с медицины и заканчивая ювелирным делом. Режущие инструменты, сделанные из данного твердого сплава, хорошо сопротивляются воздействию истирания материалом заготовки. Они не изменяют своей физической структуры и сохраняют эксплуатационные характеристики до температуры 1100 ºС, в отличие от инструментальных и быстрорежущих сталей. Из-за этого ВК8 получил наибольшее применение в следующих производственных операциях:

  • Механическая обработка деталей. Изготовление токарных резцов, фрез, сверл, зенкеров. Технологические операции, которые выполняют данным инструментом, подходят как для черновых, так и для чистовых работ. ВК8 зарекомендовал себя в обработке материалов с высоким значением коэффициента вязкости: бронзы , латуни, чугуны, жаропрочные стали, коррозионностойкие стали, сплавы титанов. Следует обратить внимание, что для обеспечения лучшей скорости резания и уменьшения износа рабочего инструмента необходимо учитывать зернистость сплава. Крупнозернистый сплав ВК8 применяют в условиях грубого, чернового точения жаростойких сталей и значительной величины подачи резца. Мелкозернистую структуру материала применяют для чистовой обработки стальных (без термообработки), чугунных, фторопластовых, алюминиевых и бронзовых деталей.
  • Бесстружковая обработка. Изготавливают валки прокатного оборудования, пуансоны и матрицы для штамповки цветных металлов, калибровки труб и прутков.
  • Газотермический напылитель . Нанесение его на поверхность деталей любых типов сталей увеличивает показатели ее износостойкости.
  • Быстроизнашивающиеся детали механизмов и машин. Например, как материал обоймы подшипников скольжения. При условии наличия жидкостного трения работает на окружных скоростях шпинделя до 6 м/с.

Твердые сплавы сохраняют относительно высокую твердость при нагреве до температуры 800-900° С (см. рис. 1, кривые 2-6). Поэтому инструмент, оснащенный твердыми сплавами, более износостоек по сравнению с инструментом, изготовленным из инструментальных сталей, и позволяет вести обработку на высоких скоростях резания, т. е. с большей производительностью . При соответствующих геометрических параметрах инструмента, оснащенного твердым сплавом, скорость резания достигает 500 м/мин при обработке заготовок из стали 45 и 2700 м/мин при обработке заготовок из алюминия. Кроме того, инструментом из твердого сплава можно обрабатывать заготовки из закаленных (HRC до 67) и труднообрабатываемых сталей. Для такого широко распространенного инструмента, как резцы и торцовые фрезы, твердые сплавы являются основным материалом, вытеснившим быстрорежущую сталь. Все большее применение находят твердые сплавы и при изготовлении других видов режущего инструмента (зенкеров, разверток, сверл и др.).

Твердые сплавы имеют высокие плотность (9,5-15,1 г/см 3), твердость (HRB 87-92) и износостойкость при высоких температурах. Теплоемкость твердых сплавов в 2-2,5 раза меньше теплоемкости быстрорежущей стали Р18, а теплопроводность сплава Т15К6 примерно та лее (выше в 1,13 раза) и значительно выше у сплава ВК8 (в 3 раза).

Для изготовления инструментов применяют следующие металлокерамические твердые сплавы:

  • вольфрамовые (однокарбидные), состоящие из зерен карбида вольфрама, сцементированных кобальтом (сплавы ВК2, ВКЗМ, ВК4, В Кб, ВК6М, ВК8, ВК8В);
  • титановольфрамовые (двухкарбидные), состоящие из зерен твердого раствора карбида вольфрама в карбиде титана и избыточных зерен карбида вольфрама, сцементированных кобальтом, или только из зерен твердого раствора карбида вольфрама в карбиде титана, сцементированных кобальтом (сплавы Т5КЮ, Т14К8, Т15К6, Т30К4, Т5К12В);
  • титанотанталовольфрамовые, состоящие из зерен твердого раствора (карбида титана, карбида тантала и карбида вольфрама) и избыточных зерен карбида вольфрама, сцементированных кобальтом (ТТ7К12).

В обозначении сплавов вольфрамовой группы цифра показывает содержание кобальта в процентах; например, в сплаве ВК8 8% кобальта и 92% карбида вольфрама. В обозначении сплавов титановольфрамовой группы число после буквы К показывает содержание кобальта, а число после буквы Т - содержание карбида титана в процентах; например, в сплаве Т15К6 содержится 6% кобальта, 15% карбида титана и 79% карбида вольфрама.

Твердость сплавов определяется твердостью карбидов; чем больше в сплаве карбидов, тем выше его твердость. Но с увеличением твердости уменьшается вязкость твердого сплава; он делается более хрупким и плохо выносит нагрузку на изгиб и срез, особенно если эта нагрузка носит ударный характер.)

Вольфрамовые сплавы более вязки и менее хрупки, чем титановольфрамовые сплавы. Это объясняется тем, что в последних находится большое количество свободных карбидов титана, которые очень хрупки) Поэтому при обработке заготовок из чугунов, когда получается «сыпучая» стружка надлома и имеется ударная, пульсирующая нагрузка вблизи режущей кромки, необходимо применять более вязкие сплавы, т.е. сплавы вольфрамовой группы; твердые сплавы этой группы применяют также при обработке заготовок из цветных и легких металлов и сплавов, а также неметаллических материалов (резины, пластмассы, фибры, стекла и др.).

При обработке заготовок из незакаленных углеродистыми легированных сталей, когда центр давления стружки отстоит дальше от режущей кромки и сходящая стружка истирает переднюю поверхность инструмента, необходимо применять сплавы титановольфрамовой группы, которые по сравнению со сплавами вольфрамовой группы тверже и более износостойки, но менее вязки.

Применение инструмента из вольфрамовых сплавов при обработке заготовок из чугуна и инструмента из титановольфрамовых сплавов при обработке заготовок из незакаленных сталей во многом определяется и тем, что титановольфрамовые сплавы обладают большей красностойкостью, имеют меньший коэффициент трения и меньшую слипаемость (свариваемость) со стальной стружкой, что способствует менее интенсивному износу режущего инструмента.

Инструменты из титановольфрамовых сплавов применяют также при точении (без ударов и при отсутствии корки) заготовок из жаропрочных сталей и сплавов, обладающих повышенной вязкостью и пониженной теплопроводностью)

При обработке заготовок из закаленных углеродистых и легированных (НRС> 55) сталей, а также высоколегированных нержавеющих и жаропрочных сталей и сплавов с ударной нагрузкой (торцовое фрезерование, точение прерывистых поверхностей) или при точении заготовок из этих материалов с коркой целесообразно (вследствие большей прочности и теплопроводности) применять инструмент из вольфрамового сплава ВК8.

Вязкость твердых сплавов зависит от зернистости и количества кобальта; при одинаковой зернистости чем больше в сплаве кобальта, тем он вязче. Поэтому по механическим свойствам твердые сплавы могут быть разделены также на дополнительные группы:

  1. более прочные и вязкие, но менее износостойкие (ВК8 и ВК.6);
  2. менее прочные и вязкие, но более износостойкие (ВК2 и ВКЗМ).

Исходя из этого, инструменты из сплавов ВК8 и ВК6 применяют в основном при предварительной (черновой) обработке заготовок из чугуна, когда припуск может быть неравномерным и работа производится с относительно большими подачами, вызывающими увеличенную нагрузку на единицу длины режущей кромки инструмента. Инструмент из сплавов ВК2 и ВКЗМ применяют при чистовой обработке заготовок из чугуна, т. е. при снятии тонкой непрерывной стружки, так как толстая стружка (при больших подачах) вызывает быстрое разрушение этих малопрочных сплавов.

В сплавах ВКЗМ, ВК4, ВК6М, ВК8В (ГОСТ 3882-74 ) буквам обозначает особенности изготовления сплава, приводящие к мелкозернистой структуре, а В - к более крупнозернистой структуре. Инструменты из сплава ВК4 применяют при чистовой и черновой обработке заготовок из чугуна: стойкость сплава ВК4 при точении в 2-4 раза выше стойкости сплава ВК8.

Сплав ВК6М, имея высокую плотность, мелкую зернистость и повышенную твердость при нагреве до температуры 400-900° С, показал хорошие результаты при обработке нержавеющих сталей и при чистовой обработке чугуна (особенно - закаленного). Его применяют для изготовления сложного и прецизионного инструмента (фасонных резцов, цельных дисковых мелкомодульных фрез).

Сплав ВК8В по сравнению со сплавом ВК8 имеет меньшую износостойкость, но большую прочность, а потому рекомендуется для чернового точения заготовок из жаропрочных сталей и сплавов и строгания заготовок из сталей.

Из сплавов титановольфрамовой группы выделяют:

а) наиболее прочные, но обладающие низкой износостойкостью (Т5К10);

б) менее прочные, но более износостойкие (Т14К8, Т15К6);

в) самые хрупкие, но наиболее износостойкие (Т30К4); такое разделение предопределяет область их применения. Сплав Т5КЮ применяют для предварительной обработки заготовок из сталей, при прерывистом резании, больших подачах (толстых стружках ) и неравномерном сечении стружки; сплавы Т14К8 и Т15К6 - при получистовой обработке заготовок из сталей со средними значениями подач, с относительно равномерным сечением стружки при непрерывном резании; сплав Т30К4 - при чистовой обработке заготовок из сталей с малыми значениями подач и непрерывном резании при высоких скоростях.

Твердые сплавы, имея высокую твердость, теплостойкость и износостойкость, обладают малой прочностью (предел прочности при изгибе 90-155 кгс/мм 2 , т. е. в 1,5-2 раза меньше, чем у закаленных быстрорежущих сталей) и низкой ударной вязкостью. Поэтому необходимо создавать такие конструкции режущего инструмента, при которых твердый сплав работал бы на сжатие, так как предел прочности при сжатии у твердых сплавов относительно высок (в 1,3-1,5 раза выше, чем у закаленной быстрорежущей стали).

Однако применение твердосплавного инструмента специальных конструкций вызывает другие недостатки [сложность изготовления, увеличенный расход мощности прирезают, увеличение сил, действующих на систему станок - приспособление - инструмент - деталь (СПИД), снижение точности обработки и др .] и не всегда позволяет полностью использовать высокие износостойкие качества твердых сплавов. К твердым сплавам повышенной прочности относятся титанотанталовольфрамовые сплавы ТТ7К12 и титановольфрамовый сплав Т5К12В. Плотность этих сплавов 12,8-13,3 г/см 3 , твердость НRВ 87-88, предел прочности при изгибе 150-165 кгс/мм 2 (у наиболее прочного титановольфрамового сплава Т5К10 предел прочности при изгибе 130 кгс/мм 2). Химический состав этих сплавов приведен в табл. 2.

По прочности и стойкости эти сплавы являются промежуточными между быстрорежущей сталью и сплавом Т5К10 и хорошо зарекомендовали себя при предварительном (черновом) резании сталей с большой толщиной стружки, при работе с ударом (например, при строгании, фрезеровании), а также при сверлении.

В последнее время во ВНИИТС разработана гамма сплавов с весьма мелкозернистой структурой (основная масса зерна карбида вольфрама размером менее микрометра): ВК6-ОМ (σ и = 120 ÷ 130 кгс/мм 2), ВКЮ-ОМ (σ и = 140 ÷ 160 кгс/мм 2) и ВК15-ОМ (σ и = 150 ÷ 170 кгс/мм 2). Сплав ВК6-ОМ используется при тонком точении и растачивании заготовок из некоторых жаропрочных и нержавеющих сталей и сплавов, чугунов высокой твердости и особенно эффективен при обработке вольфрама и молибдена. Сплав ВКЮ-ОМ предназначен для черновой и получерновой обработки, а сплав ВК15-ОМ - для особо тяжелых случаев обработки нержавеющих сталей, титановых и никелевых сплавов и особенно сплавов вольфрама и молибдена.

Применяются также относительно новые производительные марки твердых сплавов ТТ10К8Б и ТТ20К9. Сплав ТТ10К8Б целесообразно применять при черновой и получистовой обработке нержавеющих, маломагнитных сталей и некоторых марок жаропрочных сталей и сплавов. Сплав ТТ20К9 предназначен для фрезерования стали при тяжелых условиях обработки (например, глубоких пазов). Он отличается повышенным сопротивлением тепловым и механическим циклическим нагрузкам.

В последние годы большое внимание уделяется разработке новых твердых сплавов, не содержащих карбида вольфрама (безвольфрамового твердого сплава), который заменен карбидами титана. В качестве связки используется никель (в небольших количествах молибден). Предварительные испытания сплавов ТНМ-20, ТНМ-25, ТНМ-30 и др. показали хорошие результаты при обработке ферритных сплавов, никеля, меди, мельхиора.

Твердые сплавы для оснащения металлорежущего инструмента чаще выпускают в виде пластинок, форма и размер которых определяются соответствующими ГОСТами , а также в виде призматических сплошных и пустотелых столбиков. Все более широкое применение находят многогранные твердосплавные пластинки, используемые для резцов и торцовых фрез новых конструкций, в которых эти пластинки не перетачиваются (после использования всех режущих кромок пластинку заменяют новой, а изношенную перерабатывают). В промышленности используются трехгранные, четырехгранные, пятигранные и шестигранные пластинки.

Для повышения износостойкости (в 3-5 раз) неперетачнваемых твердосплавных пластинок их покрывают тонким слоем (0,005 мм) карбида титана методом осаждения из газовой среды. Из твердых сплавов изготовляют монолитный твердосплавный инструмент. В промышленности с успехом используют монолитные твердосплавные прорезные и отрезные фрезы, спиральные сверла диаметром 0,35-6 мм, канавочные фрезы, дисковые модульные зубофрезерные фрезы m = 0,2 ÷ 0,8 мм, червячные зуборезные фрезы m = 0,05 ÷ 0,9 мм, шлицевые, угловые и пальцевые фрезы, дисковые и фасонные резцы и др.

Вольфрамовая группа

Применение:

Для обработки материалов резанием: Чернового точения при неравномерном сечении среза и прерывистом резании, строгании, чернового фрезерования, сверления, чернового рассверливания, чернового зенкерования серого чугуна, цветных металлов и их сплавов и неметаллических материалов. Обработки нержавеющих, высокопрочных и жаропрочных труднообрабатываемых сталей и сплавов, в том числе сплавов титана. Для оснащения горного инструмента: Вращательного бурения геологоразведочных, эксплуатационных и взрывных шпуров и скважин в трещиноватых образивных горных породах с коэффициентом крепости по шкале Протодьяконова до f = 8. Распиловки мрамора и известняка, а также в камнерезных машинах. Для бесстружковой обработки металлов, быстроизнашивающихся деталей машин, приборов и приспособлений: Волочения, калибровки и прессования прутков и труб из стали цветных металлов и их сплавов. Быстроизнашивающихся деталей машин, приборов и измерительного инструмента, работающих при небольших ударных нагрузках. На его основе изготовляют сплав с износостойким покрытием ВП3325

Вольфрамовые твердые сплавы - двухфазные спеченные металлокерамические материалы на основе карбида вольфрама на Co и Ni связках, получаемые методами порошковой металлургии. При этом содержание металло-связки меняется в достаточно узких пределах от 3 до 15%. Такие твердые сплавы характеризуются высокими значениями физико-механических показателей, таких как теплопроводность, твердость, модуль упругости, ударная прочность, устойчивость к вибрации и т.д. Твердые сплавы существенно более прочны и менее хрупки, нежели традиционные конструкционные керамики или керметы, что обуславливает возможность их работы с значительно большими нагрузками, а также обеспечивает их лучшую технологичность и эксплуатационную устойчивость. Уступают твердые сплавы конструкционным керамикам, в частности, карбидокремниевым керамикам, по износостойкости, что обусловлено меньшей твердостью; а также по химической стойкости. Твердые сплавы, выпускаемые ООО«Вириал», ВК8 и СВН8, соответствуют требованиям технических условий ТУ 1965-018-2304285-2009 и ТУ 1967-019–2304285-2009.

Различие этих твердых сплавов между собой проявляется, прежде всего, в коррозионной стойкости, сплавы с никелем более корозионностойкие.

Области применения

Изделия из вольфрамовых твердых сплавов находят применение в качестве пар трения подшипников скольжения и торцовых уплотнений, деталей запорной арматуры, штампов, пресс-форм и др.

Отличительные особенности трибологических вольфрамовых твёрдых сплавов компании «ВИРИАЛ»:


1. Высокая прочность и износостойкость, обеспечиваемая строгим соблюдением углеродного баланса сплавов, а также применением вакуум-компрессионного спекания, которое практически устраняет остаточную пористость в материале. Высокая прочность сплавов значительно снижает вероятность растрескивания изделий в процессе эксплуатации.
2. Низкий и стабильный коэффициент трения, обеспечиваемый микронным размером зерна карбида вольфрама, снижает энергозатраты оборудования.
3. Высокая коррозионная стойкость сплавов, способных работать в агрессивных жидкостях, например в пластовых жидкостях при добыче нефти и газа при температурах близких к кипению.

Свойства вольфрамовых твёрдых сплавов «Вириал» в сравнении со стандартным твёрдым сплавом ВК8

Характеристика Материал
ВК8 СВН8 ВК8 (ГОСТ3882)
состав, % масс. WC-92, Co-8 WC-92, Ni-8 WC-92, Co-8
плотность, г/см ³ 14,8 14,7 14,6
предел прочности при изгибе, МПа 2800 2400 1670
модуль Юнга, ГПа 590 590 600
твёрдость по Роквеллу, HRA 91,0 90,0 87,5
ударная прочность, кДж/м ² 35 30 30
коэффициент теплопроводности, Вт/(м×К) 50 50 50
коэффициент термического расширения, 10 ˆ(- 6)/К 5,1 5,1 5,1
коэффициент трения в воде 0,01 0,01 -
балл коррозионной стойкости в морской воде 4 3 -



Top